品牌同韵
电话
网址
服务范围全国
技术队伍声学博士核心
空气净化器噪声控制
1. 空气净化器噪声源与传递特性
现而今,空气净化器噪声已经成为影响空气净化器使用的主要因素。空气净化器噪声源主要还是其内部的风机所产生。其传递途径则包含三部分:进气端、出气端以及面板。因此对空气净化器噪声控制主要是围绕如何通过降低其内部风机通过上述三个途径的传递贡献。
2. 风机噪声基本特性
风机的噪声包括旋转噪声和涡流噪声,其中旋转噪声是由于工作轮旋转,轮上的叶片打击周围的气体介质、引起周围气体的压力脉动造成的。由压力脉动造成气流很大的不均匀性,从而向周围辐射噪声。旋转噪声频率fi为:
fi=nzi/60 (1)
式中:n为轮机转数r/min,z为叶片数,i为谐波序号
从旋转噪声强度看,基频噪声,随着谐波次数变高,噪声强度渐渐变小。对于离心风机,叶片出口处沿着工作轮周围,由于存在尾迹,气流的速度和压力都不均匀,这种不均匀的气流作用在蜗壳上,于是在蜗壳上形成了压力随时间的脉动,气流的不均匀性越强,噪声也越大。
而涡流噪声则主要是气流流经叶片界面产生分裂时,形成附面层及漩涡分裂脱离,而引起叶片上压力的脉动,辐射出一种非稳定的流动噪声。
fc=Kvi/t (2)
式中:K为斯特劳哈尔数,在0.14到0.2之间;v为气体与叶片相对速度;t 为物体正表面宽度在垂直于速度平面上的投影。
由于涡流噪声频率主要取决于叶片与气流的相对速度,而相对速度与工作轮的圆周速度有关,则圆周速度是随着工作轮各点到转轴轴心距离而连续变化的。由此风机涡流噪声是一种宽频带连续谱噪声。
因此整体而言,风扇噪声特性是一种宽频连续谱噪声并在某些频率点显示出峰值。下图为一个典型的风机噪声频谱曲线。
风机噪声频谱
3. 空气净化器噪声控制设计方法
制氧机内部空间较为紧凑,同时风机的频谱范围较宽,因此需要根据风机运行时的噪声频谱特性,开展复合吸声材料设计,以满足在较薄的情况下得到较宽的吸声频带。再结合空气净化器的结构,开展消声通道的设计分析。
同时,如果对制氧机降噪量较大时,还需要净化器壳体的复合隔声设计。
后,对于制氧机内部振动较为**的部件,开展阻尼减振处理。

制氧机降噪
随着人们生活水平的不断提高和改善,对健康的需求逐渐增强,吸氧将逐步成为家庭和社区康复中一种重要手段。如何降氧机在运行过程中的噪声水平,是一个急需研究的新课题。
制氧机的主要声源主要包括下图所示的内部压缩机稳态噪声,电磁阀瞬态噪声以及散热风扇的噪声。其噪声传递途径主要是通过制氧机的孔隙以及进气和出气孔。
制氧机噪声时域特性
A. 对现有大部分制氧机而言,其噪声主要来自于出风口和进风口,因此需要采用声源识别技术分析净化器出风口和进风口的噪声贡献。
B. 目前大部分空气净化器的外壳为塑料,其隔声性能较低,因此需要分析空气净化器外壳的隔声性能。
C. 测量分析制氧机的频谱特性,从而为后续消声设计和隔声设计提供依据。
公司具备制氧机降噪实际案例,对噪声达到65dB(A)5L压缩机,终将制氧机噪声降低20dB左右。

噪声控制主要步骤
1. 噪声源测试:
主要内容:根据验收标准,测试该设备噪声源的特性,声源位置;分析声源的产生机理,不同声源对接收点的贡献和声源传递途径。
2. 仿真分析:
主要内容:根据设备噪声源的产生机理和设备结构特性,计算声源到接收点的噪声传递特性,并与测试结果进行比对,从而确定各种声源的贡献和各种传递途径的贡献,为降噪方案设计提供必要的依据。同时,开展降噪方案效果的预估和降噪方案优化。
3. 降噪方案设计:
主要内容:根据声源的贡献和传递特性以及设备结构特性,开展具备可实施空间的降噪方案设计。如设计吸声材料、密封、隔声和阻尼的位置,并预估降噪效果,使降噪量达到目标要求,并满足设备的稳定运行。
这部分工作是噪声控制的核心。具体而言,首先是根据设备运行所要求的噪声限值要求(即噪声控制的目标)和设备运行时的实际噪声值和倍频程噪声特性。
4. 声学材料设计
主要内容:根据上述噪声源频谱特性,设计满足声学要求的吸声材料、阻尼材料和隔声材料;同时满足设备的工作温度、环保、保温/散热、耐腐蚀等具体要求。
5. 降噪方案实施
主要内容:根据降噪方案和声学材料,开展设备降噪实施。噪声控制的主要效果主要取决于降噪方案、声学材料设计和方案具体实施过程。
6. 降噪效果评估
主要内容:评价该产品在相同工况下,在实施降噪方案前后的声学特性,评价方案的降噪效果。如果降噪效果满足要求,申请相关**,形成知识产权。

各种气体放空,通常是直接泄放在大气中,放空排气装置的尾端一般为管段或孔,其截面多为圆形,所以,这类放空基本上属自由圆射流。气体流出前的压力一般都很高,一旦从喷口喷出,压力锐减为环境压力,而体积相应扩大,表现为以很高速度流出喷口,气体以很高的速度流出管或孔口,冲击、卷吸静环境气体,形成剧烈扰动,从而辐射出强烈的噪声,这种噪声称为喷注射流噪声。同时喷注结构一般为亚声速,即出流速度小于当地声速,它大体分为混合区、过渡区和充分发展区三个部分。混合区的长度约为喷口直径D的5倍,混合区内有一个锥形喷注核心,核心气流等于喷气口的流速。在核心周围,喷注与周围卷吸来的气体剧烈混合,它是喷注噪声产生的主要区域,该部分辐射噪声主要为高频噪声。过渡区是离喷口5D~15D区域,该区域气流为湍流运动,是产生噪声的次要区域,喷注噪声频率较低。充分发展区位于15D以外,它产生的喷注噪声一般可忽略。
喷注噪声是宽频带噪声,它的强度及频率可由实际测量得到。如果由理论计算,它的峰值频率可由下式估算:
fm=0.2V/D
式中:fm为喷注噪声的峰值频率(Hz);V为排气速度(m/s);D为喷口直径(m)
喷注辐射噪声的总声功率W可由下式近似计算:
式中:R为常数,实验值为0.3×10-4~1.8-4;ρ为排放气体密度(kg/m3);ρ0为环境大气密度(kg/m3);c0为大气中声速(m/s)
若用声压级表示喷注噪声强度,在离喷口lm远处的声压级Lp可由下列经验公式计算:
式中:g=Ps/P0;Ps为喷口内气流驻点压强,P0为环境压强。
针对排气噪声控制,一般采用排气消声器,主要包括小孔喷注消声器、节流降压消声器和多孔扩散消声器。
-/gbaaefi/-
http://tyacoustic.b2b168.com