品牌同韵
可售卖地全国
所在地南京
服务范围全国
技术队伍声学博士核心
南京同韵声学科技有限公司是一家致力于将声学理论和技术工程化、应用化的科技型企业。目前主要开展的业务包括系统的噪声与振动控制、建筑声学设计、噪声测试分析以及咨询和培训等业务。
乘用车声学开发是声学同步设计中,相对开展较多的工作。乘用车声学包开发主要包括以下内容:
1. 概念阶段
1.1 Benchmarking(定标)和目标值设定
1.1.1 对竞品车进行路试和整车空气传播噪声传递函数测试
1.1.2 对竞品车声学包进行技术分析和声学测试
1.1.3 为目标车选择声学包方案
1.1.4 设定整车目标值
噪声测试
2. 工程阶段
2.1 阻尼片仿真分析
2.1.1 测试阻尼材料阻尼性能
2.1.2 进行阻尼片仿真分析
2.2 声学包仿真与设计优化
2.2.1 对平板件进行吸声和隔声测试
2.2.2 材料测试、建模,用于仿真输入
2.2.3 声学包仿真分析与设计优化
2.3 SEA仿真分析
2.3.1 建立SEA模型
2.3.2 将内前围隔音垫、地毯等声学包零件部件集成到SEA模型中
2.3.3 基于目标车型的ATF性能,分解零部件目标值
2.3.4 基于分解出来的目标值,对零部件进行再次仿真分析和设计优化
噪声测试
3. 样件/样车阶段
3.1 隔声性能测试及前围区域设计优化
3.1.1 对内前围隔音垫和地毯隔音垫进行隔声测试
3.1.2 对前围区域各个开孔处进行隔音性能测试
3.1.3 对前围区域各个开孔处进行优化设计
3.2 声载荷测试及目标分解
3.2.1 声载荷测试
3.2.2 对状态的零部件进行声学测试和材料分析
3.2.3 更新并完成SEA模型,然后进行目标值分解
3.3 声学包设计优化并定型
3.3.1 根据新的零部件目标值,对声学包进行进一步的设计优化
3.3.2 对零部件进行吸声和隔声测试,加以验证
3.4 OTS样车验证
3.4.1 样车路试
3.4.2 样车空气传播噪声传递函数测试
3.4.3 通过手工样件对整车进行优化并验证
噪声测试,隔声测试
4. 量产前阶段
对样品车在量产前提供必要的NVH支持

空气净化器噪声控制
1. 空气净化器噪声源与传递特性
现而今,空气净化器噪声已经成为影响空气净化器使用的主要因素。空气净化器噪声源主要还是其内部的风机所产生。其传递途径则包含三部分:进气端、端以及面板。因此对空气净化器噪声控制主要是围绕如何通过降低其内部风机通过上述三个途径的传递贡献。
2. 风机噪声基本特性
风机的噪声包括旋转噪声和涡流噪声,其中旋转噪声是由于工作轮旋转,轮上的叶片打击周围的气体介质、引起周围气体的压力脉动造成的。由压力脉动造成气流很大的不均匀性,从而向周围噪声。旋转噪声频率fi为:
fi=nzi/60 (1)
式中:n为轮机转数r/min,z为叶片数,i为谐波序号
从旋转噪声强度看,基频噪声,随着谐波次数变高,噪声强度渐渐变小。对于离心风机,叶片出口处沿着工作轮周围,由于存在尾迹,气流的速度和压力都不均匀,这种不均匀的气流作用在蜗壳上,于是在蜗壳上形成了压力随时间的脉动,气流的不均匀性越强,噪声也越大。
而涡流噪声则主要是气流流经叶片界面产生分裂时,形成附面层及漩涡分裂脱离,而引起叶片上压力的脉动,出一种非稳定的流动噪声。
fc=Kvi/t (2)
式中:K为斯特劳哈尔数,在0.14到0.2之间;v为气体与叶片相对速度;t 为物体正表面宽度在垂直于速度平面上的投影。
由于涡流噪声频率主要取决于叶片与气流的相对速度,而相对速度与工作轮的圆周速度有关,则圆周速度是随着工作轮各点到转轴轴心距离而连续变化的。由此风机涡流噪声是一种宽频带连续谱噪声。
因此整体而言,风扇噪声特性是一种宽频连续谱噪声并在某些频率点显示出峰值。下图为一个典型的风机噪声频谱曲线。
风机噪声频谱
3. 空气净化器噪声控制设计方法
制氧机内部空间较为紧凑,同时风机的频谱范围较宽,因此需要根据风机运行时的噪声频谱特性,开展复合吸声材料设计,以满足在较薄的情况下得到较宽的吸声频带。再结合空气净化器的结构,开展消声通道的设计分析。
同时,如果对制氧机降噪量较大时,还需要净化器壳体的复合隔声设计。
后,对于制氧机内部振动较为**的部件,开展阻尼减振处理。

噪声控制
噪声污染已成为当今世界性问题。产品的低噪声性能已成为衡量产品质量的重要指标;产品的噪声性能往往比其他性能更快更直接的体现出来,因此很多产品的噪声指标已成为该产品的重要影响因素。
针对设备系统噪声控制主要是对各种设备和产品的噪声**标问题,开展噪声源测试、降噪方案设计、声学材料选型、降噪效果预估和方案优化、降噪方案实施和评价等系统工作,一站式解决其噪声问题。

船舶声学设计内容
1 目标值设定
在该阶段,根据产品设计任务书(其中应给出船舶型号、航区、设计性能指标、使用要求和船上可能采用的主要设备和推进系统),结合现有同类型船舶的声学参数,确定船舶各个区域的噪声值。
2 工程设计阶段
根据船舶各个声学目标值,确定该船舶各个设备的噪声值,安装/布置形式;估算行驶中的噪声特性,并设计船舶内各个舱室设备的安装条件、结构尺寸以及船舶内舱室声学构件的声学性能和布置。主要包括:
A. 选择和确定合适的主机,满足船舶动力和噪声声功率要求;并确定主机的安装形式。
B. 选择和确定合适的辅机,满足船舶行驶和噪声要求;并确定其安装方式。
C. 设计船舶内各空调管路安装方式和消声结构。
D. 选择和确定合适的螺旋桨,满足船舶推进和噪声要求;并确定安装方式和安装位置/数量。
E. 确定船舶内各个舱室的布置形式和尺寸结构,如主机室,各个辅机安装舱室,各个工作舱室以及船舶内各个居住室的布局;各个舱室的尺寸结构。
F. 确定各个主机室、辅机室的吸声和隔声设计方案。
G. 确定各个舱室,如工作室(如驾驶室、办公室、厨房等)和居住室的吸声、隔声和阻尼设计方案。
H. 对船舶内其他舱室(如有,例如酒吧、会议室、音乐或放映厅)等舱室进行声学设计。
样船的声学实施阶段
根据上述声学设计,开展船舶内各个设备的声功率测试、安装实施,满足上述声学要求的各个设备的声学安装以及开展满足上述声学要求的船舶各个舱室的构件安装。
实船验证工作
实际测试该船舶标准工况下,船舶各个区域的噪声分布,评价各个舱室是否满足初船舶噪声设计值得要求。
公司已建成LMS 12+ 振动噪声分析系统;B&K PULSE 振动噪声分析系统、B&K 声强探头、B&K 传声器校准系统以及Matlab计算分析软件。具备各类家用电器、机电设备、风电设备、航空航天、工程机械以及商业建筑等多个领域的系统噪声控制能力和经验。公司获得2013年度南京型科技创业计划,于2015年通过届江苏省社会信用管理贯标验收。
http://tyacoustic.b2b168.com